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a b s t r a c t 

Enhancement of low-quality retinal fundus images is beneficial to clinical diagnosis of ophthalmic dis- 

eases and computer-aided analysis. Enhancement accuracy is a challenge for image generation models, 

especially when there is no supervision by paired images. To reduce artifacts and retain structural con- 

sistency for accuracy improvement, we develop an unpaired image generation method for fundus image 

enhancement with the proposed high-frequency extractor and feature descriptor. Specifically, we summa- 

rize three causes of tiny vessel-like artifacts which always appear in other image generation methods. A 

high frequency prior is incorporated into our model to reduce artifacts by the proposed high-frequency 

extractor. In addition, the feature descriptor is trained alternately with the generator using segmentation 

datasets and generated image pairs to ensure the fidelity of the image structure. Pseudo-label loss is pro- 

posed to improve the performance of the feature descriptor. Experimental results show that the proposed 

method performs better than other methods both qualitatively and quantitatively. The enhancement can 

improve the performance of segmentation and classification in retinal images. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

In recent years a lot of disease detection and segmentation al- 

orithms for fundus images have been proposed to assist clini- 

al diagnosis and automatic retinal image analysis [1] . Both clin- 

cal disease screening and standard image methods require high- 

uality fundus images, while the high quality cannot always be 

uaranteed due to reasons like noisy image capture, sample/patient 

ariability [2] . The unsatisfied quality of retinal images is usually 

hown as poor illuminance, low contrast, and blurriness, which 

akes it hard for ophthalmologists to distinguish different diseases 

o as to decrease the accuracy of diagnosis [3] . Meanwhile, poor- 

uality images sometimes lead to unsatisfied results in automatic 

mage processing (e.g. segmentation, tracking), which may affect 

urther disease analysis. 

The blurriness of fundus image can be classified into four 

rades [4] , which is shown in Fig. 1 (a)–(d). The blurriness is caused

y different degrees of cataracts. As cataracts worsen, the blurri- 

ess of the image increases and the visibility of the fundus struc- 

ure decreases. It is difficult to accurately extract the fundus struc- 

ure of blurred images, especially heavily blurred images. Fig. 1 (e) 
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s an underlit image and Fig. 1 (f) is a light leak image where the

dge part is brighter due to the imperfect imaging process. The 

tructure in the excessive dark or bright area is not easily recog- 

izable. 

Many excellent retinal image enhancement methods have been 

roposed recently. For classical methods, complex algorithms are 

esigned to adjust the contrast and brightness of blurred images 

ccording to the prior characteristics [5] . For DL methods, some 

ethods first generate paired datasets, in which clear and blurry 

mages correspond pixel by pixel, and then train the enhancement 

etworks with the generated data [6] . The enhancement results 

sually depend on the generated paired data. Other methods use 

he cycle consistency [7] to loosen the data constraints. Enhance- 

ent accuracy is the main challenge of these methods because un- 

aired datasets have less supervision than paired datasets, espe- 

ially for details like blood vessels. 

For unpaired image translation methods, we find that tiny 

essel-like artifacts always appear in some hard cases. In addition, 

e should also pay more attention to the anatomical structures in 

he blurry image, such as blood vessels. So we propose a fundus 

mage enhancement method with artifact reduction and structure 

etention. Our method has an enhancement generator, a blur gen- 

rator, a high frequency (HF) extractor, a feature descriptor (FD) 

https://doi.org/10.1016/j.patcog.2022.108968
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
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Fig. 1. Retinal images. (a) Clear image. (b) Slightly blurred image. (c) Moderately blurred image. (d) Severely blurred image. (e) Underlit image. (f) Edge light leak image. 
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nd two discriminators. Our contributions can be mainly summa- 

ized in the following four aspects: 

• We develop an unpaired fundus image enhancement method, 

which can effectively reduce artifacts and ensure structural 

consistency. 
• We summarize three causes of artifacts — severe blurriness, 

imperfect illumination, and misleading information. High fre- 

quency prior is incorporated into our generative networks to 

reduce the artifacts by the proposed high-frequency extractor. 
• A feature descriptor is trained alternately with the generator to 

ensure the fidelity of image structure. Pseudo-label loss is pro- 

posed to extract a better vessel feature in blurry images. 
• Both visual comparison and quantitative evaluation prove the 

superiority of this method. And the enhancement can improve 

retinal image processing such as vessel segmentation, disease 

classification. 

. Related works 

.1. Classical retinal image enhancement 

Classical fundus image enhancement methods usually use the 

rior information of the image to design complex algorithms man- 

ally. These methods usually focus on the improvement of contrast 

nd the adjustment of brightness [8] . They can be divided into 

hree categories. 

Methods of Histogram Adjustment Contrast limited adaptive his- 

ogram equalization (CLAHE) [9] is wildly used in retinal image en- 

ancement for contrast improvement. In [10] , Setiawan et al. use 

LAHE in the green channel to improve the quality of color retinal 

mages. Zhou et al. [5] first leverage a luminance matrix obtained 

y gamma correction and then use CLAHE in the luminosity chan- 

el of L ∗a ∗b ∗ [11] color space to adjust the luminosity and con-

rast. Gupta et al. [3] employ a quantile-based histogram equaliza- 

ion method after using adaptive gamma correction. 

Methods Based on Image Formation Model Image formation 

odel is usually described as: 

 (x ) = J (x ) t(x ) + A (1 − t(x )) , (1)

here x is the input point, I is the observed intensity, J is the scene

adiance, A is the global atmospheric light, and t is the medium 

ransmission [12] . Xiong et al. [13] make use of the image forma- 

ion model and estimate background illuminance and transmission 

ap by extracting background and foreground. Then the blurry 

undus image is divided into high-intensity areas and low-intensity 

reas to be processed separately. Gaudio et al. [14] re-interpret the 

istortion model for image dehazing. Based on dark channel prior 

12] , a family of brightening, darkening and sharpening methods 

re developed. These methods can be combined for retinal im- 

ge enhancement. In [15] , a double pass fundus reflection (DPFR) 

odel for retinal image enhancement is proposed based on the 

mage formation model. Retinex theory [16] and dark channel prior 

12] are used to correct illumination and dehaze in this method. 

Methods with Separated High and Low Frequencies The low- 

requency component of a fundus image contains local brightness 
2 
nformation, while the high-frequency component contains struc- 

ural information such as blood vessels, lesions, optic cup and disk. 

ao et al. [8] also use Gaussian filtering to remove the influence of 

ase-intensity and then non-uniform addition is used to enhance 

he contrast. In [17] , retina cortex theory [16] is employed to re- 

ove low frequency in the root domain. Then grayscale adjustment 

nd refinement are used to further enhance the contrast and adjust 

he image color. The idea of removing low-frequency components 

an be used for reference because the structure and details of an 

mage are more concentrated in high frequencies. 

However, classical methods are usually proposed with multiple 

teps while each step often has a lot of artificially designed pa- 

ameters. The design process is complicated and time-consuming, 

specially when considering different kinds of degradation like in- 

ufficient illuminance or overexposure. Besides, model design and 

odel parameter selection are empirically set based on the data 

et, which may lead to data sensitivity. Furthermore, image en- 

ancement is an ill-posed problem, since one input can produce 

everal outputs. The selection of the final enhanced result depends 

n the designers experience and visual evaluation. 

.2. Deep-learning-based retinal image enhancement 

Recently DL-based methods get more attention and they can be 

oughly divided into three categories according to the data sets. 

Data Pre-generation Methods It is hard to obtain a sufficient 

mount of paired high-quality and low-quality fundus images in 

he real imaging process for model training. But image degra- 

ation is easier to simulate compared with image enhancement. 

herefore, these methods degrade high-quality images to gener- 

te paired data. Luo et al. [18] propose CataractSimGAN to syn- 

hesize cataract-like images. They use these generated paired im- 

ges to train the CataractDehazeNet for enhancement. Shen et al. 

6] model the interference in terms of three factors. The high- 

uality images can be processed by the model with randomly per- 

urbed variables to obtain their degraded counterparts. Based on 

he degraded data set, Cofe-Net is proposed to suppress the degra- 

ation factors. These methods are usually multi-step and the en- 

ancement results depend on their degeneration algorithm. 

Single-Shot Image Reconstruction Methods Qayyum et al. [19] put 

orward a single-shot deep image prior (DIP) based [20] approach 

hich does not require any training data. They leverage the im- 

ge formation model [12] to decompose the retinal image into the 

ransmission map, atmospheric light and enhanced image via cou- 

led DIPs. Dark channel prior [12] is incorporated when training 

he models. Blood vessels and other structures are enhanced in the 

mage reconstruction. 

Unpaired Image Translation Methods Unpaired image-to-image 

ranslation generally refers to image translation from the source 

omain to the target domain without paired data [7] . You et al. 

21] propose a retinal image enhancement method called Cycle- 

BAM, which adopts Convolutional Block Attention Module (CBAM) 

22] to improve the baseline of CycleGAN [7] . They also prove that 

he enhanced results are beneficial to diabetic retinopathy classi- 

cation. Zhao et al. [23] leverage cyclic consistency at the feature 

evel with a dynamic feature descriptor for retinal image enhance- 
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Fig. 2. Flowchart of our approach. There are two cycles in the training phase and their training process is the same. Only Cycle 1 is shown in (a). The high-frequency 

extractor H extracts the high frequency of the green channel as the side input for the generator to reduce artifacts. The feature descriptor F is trained alternately with 

generators and used to ensure the consistency of vessel structure. G e is used for enhancement in the testing phase. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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ent. This method reduces the artifacts in the generated images 

nd the enhanced results are conducive to subsequent segmen- 

ation, tracking tasks. These methods are end-to-end and the en- 

ancement process is learned from real data to avoid designers 

ubjective choice. 

However, due to the lack of pixel-by-pixel supervision of the 

aired data, the challenge of this method lies in the accuracy of 

he enhanced results. Small vessel-like artifacts sometimes accom- 

any the image generation. In addition, extracting the structure 

f blurred images is a challenge for the generator. Our method is 

ased on the unpaired image translation but we introduce the idea 

f high and low frequency separation in classical methods to re- 

uce the artifacts. On the other hand, we develop a special feature 

escriptor with the pseudo-label loss to assist the training of the 

enerator. 

. Methodology 

.1. Model structure 

.1.1. Overview 

We regard fundus image enhancement as a special image-to- 

mage translation problem and our baseline is CycleGAN [7] . The 

owchart of our approach is displayed in Fig. 2 . Denote low-quality 

etinal fundus images as { x n } N n =1 ∈ R 

W ×H×3 and the unpaired high- 

uality images as { y m 

} M 

m =1 ∈ R 

W ×H×3 . Our goal is to enhance the 

ow-quality image x to generate the corresponding enhanced im- 

ge ˆ y as clear as the high-quality image y . At the same time, ˆ y 

hould keep the content consistent with x . Our method has one 

igh-frequency extractor, one feature descriptor, two generators, 
3 
nd two discriminators. The high-frequency extractor H is used to 

xtract the high frequency of color retinal images. The two gen- 

rators have the same model structure. The enhancement genera- 

or G e : ( x , H( x )) → 

ˆ y represents enhancing a blurry image into a

lear image, where H( x ) is sent into G e from the side to assist en-

ancement. The blur generator G b : ( y , H( y )) → 

ˆ x denotes blurring 

he input clear image. The two discriminators are denoted as D e 

nd D b respectively. D e is used to distinguish real high-quality im- 

ges from images generated by G e , and D b is used to distinguish 

etween the real blurred images and the images generated by G b . 

he feature descriptor F is employed to extract structural informa- 

ion of real fundus images x , y and reconstructed images ˜ x , ˜ y . Af- 

er training, we use G e to enhance the low-quality images with the 

elp of the high-frequency extractor. The model structures will be 

iscussed in detail in the following sections. 

.1.2. High-frequency extractor 

The process of high-frequency extraction is shown in the left 

ottom of Fig. 2 . The low frequency of the green channel is sepa-

ated by the Gaussian kernel. High frequency is obtained by sub- 

raction. We normalize the high frequency to correct the extreme 

alue. High-frequency images are concatenated with input images 

nd feature maps of the generator to help the image generation. 

he removal of low-frequency components means that the effects 

f uneven lighting are eliminated. The stretching of contrast ampli- 

es structural information, and the selection of the green channel 

educes misleading information. 

We find that artifacts sometimes accompany the enhancement 

hen we utilize generative adversarial networks without the con- 

traint of paired data such as CycleGAN [7] . The artifacts usually 

merge as small blood vessels in the enhancement results, which 
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Fig. 3. Images with artifacts. The first row shows the low-quality image and the 

second row is the enhanced results by CycleGAN [7] . (a) Heavily blurred image. (b) 

Underlit image. (c) Light leak image. (d) Choroidal misleading image. 
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H

Fig. 4. High frequency of RGB. The first row is a clear image and the second row is 

a blurred image. (a) Original image. (b) HF of the red channel. (c) HF of the green 

channel. (d) HF of the blue channel. The green channel has the clearest structural 

information. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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ctually does not exist in the real blur images. We summarize sev- 

ral scenarios where artifacts easily appear. Examples are shown 

n Fig. 3 . First, heavily blurry images are prone to have artifacts af- 

er enhancement. The contrast in heavily blurry areas is too low 

o identify the fundus structure. The generator easily treats plausi- 

le perturbations as blood vessels and thus produces artifacts. Sec- 

nd, images with imperfect illumination such as insufficient light 

r light leak are more likely to produce artifacts. These areas are 

sually highly blurry so that the fundus structure is very diffi- 

ult to recognize. In addition, it needs two steps for the enhance- 

ent of images with imperfect illumination – brightness adjust- 

ent and contrast stretching, which is more complex than just 

ontrast stretch in other low-quality images. Third, some textures 

imilar to retinal vessels, such as choroidal vessels, may mislead 

he generator to produce artifacts. 

In order to reduce the artifacts, uneven illumination and mis- 

eading information should be eliminated and fundus structure in- 

ormation needs to be increased. In fundus images, the uneven 

ight intensity is in the low-frequency component, and the fun- 

us structure information is always in the high-frequency compo- 

ent. Inspired by retina cortex theory [16] and frequency separa- 

ion methods [8] , we develop a high-frequency extractor to reduce 

he influence of illumination and amplify the fundus structure. A 

wo-dimensional Gaussian kernel is employed to extract the low- 

requency 

auss (p, q ) = 

1 

2 πσ 2 
e −

(p−μ) 2 +(q −μ) 2 

2 σ2 , (2) 

here p and q are the coordinates of pixels, μ denotes the central 

oint and σ determines the falling gradient of the gaussian kernel. 

he size of the Gaussian kernel is about 1 
6 of the retinal image in 

rder to cover the optic disc. σ is set as the kernel size divided by

. 

High-frequency extraction can be summarized as the following 

hree steps. First, the input image is convolved with a Gaussian 

ernel to get the low-frequency image. We pad the mask with the 

ean value to reduce its impact on the boundary region before 

onvolution. Second, low frequency is subtracted from the input 

mage to get the high frequency. Third, the high frequency is nor- 

alized with the threshold T and some extremums are abandoned 

sing the truncation function f . Extreme values that deviated from 

he histogram are corrected and the contrast of the high-frequency 

mage is stretched during the normalization. Denote the input im- 

ge as x , its high-frequency image H( x ) can be expressed as: 

( x ) = f 

(
( x − x ∗ Gauss ) + T 

2 T 

)
, (3) 
4 
here Gauss means the pre-defined Gaussian kernel and ∗ denotes 

onvolution. f is the truncation function which is defined as: 

f (a ) = 

{ 

0 , (a < 0) 
a, (0 ≤ a < 1) 
1 , (1 ≤ a ) 

(4) 

We select the green channel because it has the best contrast, 

he least noise, and the richest retinal structures in retinal images 

24] . High-frequency images of the three channels are shown in 

ig. 4 . In both clear and blurred images, the high frequency of the 

ed channel has a lot of choroidal texture, which will interfere with 

he enhancement process. The blue channel has the lowest con- 

rast, unobvious structural information, and large noise. The high 

requency of the green channel has the most obvious blood vessels 

nd the highest image quality in the three channels. It can provide 

 lot of useful structure information in blurred images, so we only 

se the green channel to assist the image enhancement. 

.1.3. Feature descriptor 

In order to retain the consistency of structural information, 

lood vessels should be paid more attention to during enhance- 

ent. A specialized feature descriptor F is developed to assist 

mage generation. Commonly used feature extractors are usually 

rained on clear images. They are not very good at extracting in- 

ormation from blurred images, because the contrast of blurred 

mages is low and the gradient information is not obvious. In our 

pproach, clear and blurred image pairs are generated during the 

raining of the generator (e.g. y and 

ˆ x ). The feature descriptor is 

ynamically trained by the retinal vessel segmentation dataset and 

enerated image pairs. We send clear images to the feature de- 

criptor to get pseudo labels of the paired blurred images. Then 

he feature descriptor is used to extract structure information of 

eal images x , y and reconstructed images ˜ x , ˜ y . The training pro- 

ess of the feature descriptor is intuitively similar to generative ad- 

ersarial nets, where the generator and the feature descriptor up- 

ate the parameters alternately. Compared with unsupervised en- 

ancement tasks, segmentation is much easier to optimize with 

he high-quality retinal images and corresponding ground truths. 

urthermore, the feature descriptor F is also trained with paired 

lear and blurred images and gradually improves the performance 

n blurred images. 

U-Net [25] structure is employed in our feature descriptor. The 

odel has 4 down-sampling, 4 up-sampling layers, and a convolu- 

ional layer with stride 1 at the outermost to expand the channel 

o 64. The number of channels is doubled every time it is down- 

ampled. Corresponding feature maps are concatenated before be- 

ng sent to the up-sampling layers. 
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.1.4. Generator and discriminator 

There are two generators in our method. G e is designed to en- 

ance blurred images, while G b is used to blur clear images. Retinal 

mages and their high-frequency images of the green channel are 

oncatenated together to work as input to the generator. Besides, 

igh-frequency images are downsampled and sent to concatenate 

ith feature maps of different layers in the generator. They will be 

oncatenated every time the feature maps are downsampled be- 

ause receptive fields differ in the feature maps of different sizes. 

ormalization and activation are performed before concatenation. 

hen the two cycles in our approach can be expressed as: 

 e ( x , H( x )) = 

ˆ y , G b ( ̂ y , H( ̂ y )) = 

˜ x , (5)

 b ( y , H( y )) = 

ˆ x , G e ( ̂ x , H( ̂ x )) = 

˜ y , (6)

here ˜ x , ˜ y denote the reconstructed images from x and y . 

The discriminator D e is employed to distinguish the enhanced 

mages ˆ y from the real high-quality images y , while D b is used 

o distinguish between the real blurred images and the images 

enerated by G b . The function of the discriminator is defined as 

 : X → d ∈ [0 , 1] . When the input is a real image, d approaches 1,

nd when the input image is from the generator, d is close to 0. 

Both generators have the same model structure. They consist 

f 3 convolutional layers, a residual bottleneck module, and 3 cor- 

esponding deconvolutional layers. The bottleneck module has 9 

esidual blocks, in which two convolutional layers and one skip 

onnection are utilized. The deconvolutional layers have the same 

ernel sizes and stride as the corresponding convolutional layers. 

he two discriminators also have the same structure. It consists of 

 convolutional layers and the input is downsampled four times. 

.2. Objective function 

Three kinds of neural networks need to be trained in our 

ethod: generator, discriminator, and feature descriptor. When one 

f the networks is trained, the parameters of the other two models 

re not updated. In each iteration, we first update the feature de- 

criptor, then the generator, and finally the discriminator. We min- 

mize the losses to optimize network parameters. 

.2.1. Generator 

Adversarial loss L 

G 
Adv can constrain the network to learn the 

apping from blur to clear or from clear to blur. We use the least 

quare loss to train the generator because of its stability. 

 

G 
Adv = 

(
D e ( ̂ y ) − 1 

)2 + 

(
D b ( ̂ x ) − 1 

)2 
. (7) 

Cycle consistency loss can reduce the space of possible map- 

ing and keep the content consistent during the training. L 1 loss 

s calculated between real images x , y and reconstructed images ˜ x , 

˜ 
 . The cycle consistency loss L Cyc at image level can be expressed 

s: 

 Cyc = ‖ ̃

 x − x ‖ 1 + ‖ ̃

 y − y ‖ 1 , (8) 

here ‖ · ‖ 1 is the absolute-value norm. 

Identity loss L Idt is used to help preserve the image color. 

 Idt = ‖ 

G e ( y , H( y )) − y ‖ 1 + ‖ 

G b ( x , H( x )) − x ‖ 1 . (9) 

Structure consistency loss L S uses the feature descriptor F to 

xtract feature maps of real images and reconstructed images. It 

llows the generator to pay more attention to fundus structure in- 

ormation. F l (·) refers to extracting the feature maps of the lth 

ayer and λl is the weight. If l is the outermost layer of the fea- 

ure descriptor, the output is the segmentation map. 

 S = 

∑ 

l 

λl 

(∥∥F l ( ̃ x ) − F l ( x ) 
∥∥

1 
+ 

∥∥F l ( ̃ y ) − F l ( y ) 
∥∥

1 

)
. (10) 
5 
Full objective can be summarized as follows: 

 

G 
Total = L 

G 
Adv + λCyc L Cyc + λIdt L Idt + λS L S . (11) 

.2.2. Discriminator 

Adversarial loss is utilized to train the discriminators. We aver- 

ge the output of the discriminator to get the final prediction. The 

utput of a real image tends to be 1, and a fake image tends to be

. 

 

D 
Adv = 

(
D e ( ̂ y ) 

)2 + ( D e ( y ) − 1 ) 
2 + 

(
D b ( ̂ x ) 

)2 + ( D b ( x ) − 1 ) 
2 
. (12) 

.2.3. Feature descriptor 

Segmentation loss L Seg is used to train the feature descriptor 

o capture the structure information of retinal images. Denote ves- 

el segmentation dataset as { p k , q k } K k =1 , where p k ∈ R 

W ×H×3 is the 

olor retinal image and q k ∈ R 

W ×H×1 is the corresponding segmen- 

ation map. 

 Seg = ‖ F ( p ) − q ‖ 1 . (13) 

Pseudo label loss L PL can improve the capability of the feature 

escriptor when the input is blurry images. We make use of the 

mage pairs produced during the training of the generator. The seg- 

entation result of the clear image is used as the pseudo label of 

he blurred image to train the F . F̄ means only forward propaga- 

ion and parameters are not updated. 

 PL = 

∑ 

l 

λl 

(∥∥∥F l ( x ) − F̄ l ( ̂ y ) 

∥∥∥
1 

+ 

∥∥∥F l ( ̂ x ) − F̄ l ( y ) 

∥∥∥
1 

)
. (14) 

The total loss of feature descriptor is expressed as: 

 

F 
Total = L Seg + λPL L PL . (15) 

. Experiments and results 

.1. Datasets and implementation details 

We experiment on public and private datasets. For experi- 

ents with public datasets, Eye-Quality (EyeQ) Assessment Dataset 

26] annotates the quality of retinal images, where “good”, “us- 

ble” and “reject” labels correspond to image qualities ranging 

rom good to poor. EyeQ training set: We randomly select 600 im- 

ges marked as “usable” or “reject” as low-quality images, and 600 

mages with good annotations as high-quality images. Segmentation 

raining set: In order to train the feature descriptor, 140 fundus ves- 

el segmentation images are selected from CHASEDB1 [27] , DRIVE 

28] , DRHAGIS [29] , HRF [30] , and IOSTAR [31] datasets. EyeQ test 

et: 200 images from Eye-Quality Assessment Dataset [26] with 

usable” or “reject” labels are employed. All images are resized to 

12 × 512 before being sent to the model. 

For experiments with private datasets, images collected clini- 

ally from Anzhen Hospital and Tongren Hospital are applied. Clin- 

cal training set: We employ 550 low-quality and 550 high-quality 

undus images to train our networks. The image quality (high qual- 

ty or low quality) of the dataset is labeled by ophthalmologists. 

he segmentation training set is also used for training the feature 

escriptor. There are three private test sets in our experiments. 

linical test set: We use 50 clinically collected low-quality fundus 

mages from the same source as the clinical training set for no- 

eference assessment. Cataract surgery test set: Sixteen pairs of im- 

ges before and after cataract surgery are tested for full-reference 

ssessment. Image after surgery is the high-quality ground truth 

f the image before surgery. Angle and position offsets between 

mage pairs will affect the accuracy of the evaluation. So these im- 

ge pairs are registered using PIIFD [32] , and only the overlapping 
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Fig. 5. Visual comparison with state-of-the-art methods. (a) Low-quality image. (b) Cao and Li [8] (c) Xiong et al. [13] (d) Zhou et al. [5] (e) Gupta and Tiwari [3] (f) Gaudio 

et al. [14] (g) Zhang et al. [15] (h) CycleGAN. [7] (i) CUT. [33] (j) You et al. [21] (k) Zhao et al. [23] (l) Cofe-Net [6] (m) Ours. (b)–(g) are classical methods and (h)–(m) are 

deep learning methods. 
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rea is counted during the assessment. Degradation test set: An- 

ther data set for full-reference assessment is the images got from 

he fundus image degradation algorithm in [6] . We sent 100 clear 

mages to the degradation model to get the corresponding blur im- 

ges. 

Similarly as CycleGAN [7] , we set λCyc = 10 , λIdt = 5 in the

raining phase. The first layer and four down-sampling layers of 

he feature descriptor are selected to calculate L S and L PL , while 

l is set as [ 1 
16 , 

1 
8 , 

1 
4 , 

1 
2 , 1 ] following the settings in [18] . λS is set

s 0.5 and λPL is set as 0.025 according to the ablation study. There 

re hundreds of feature layers involved in the calculation of L S 

nd L PL , while only several channels for other losses like L Cyc . The

mall value of λS and λPL can make these losses in the same order 

f magnitude. The networks are trained for 200 epochs. 

We adopt no-reference and full-reference image quality as- 

essment methods to evaluate the enhancement results. For no- 

eference assessment, BRISQUE [34] and entropy are adopted. We 

etrain the classifier of BRISQUE with fundus images to better eval- 

ate the image quality for the specific application. The training set 

ontains 1400 fundus images with different qualities labeled by 

phthalmologists. PSNR and SSIM are utilized for full-reference as- 

essment. Lower values of BRISQUE indicate better image quality, 

hile higher entropy, PSNR and SSIM scores mean better enhance- 

ent results. 

.2. Comparison with other methods 

In this section, we compare our approach with other state-of- 

he-art color retinal enhancement methods. These methods can be 

ivided into two categories: classical methods [3,5,8,13–15] and 

L-based methods [6,7,21,23,33] . Methods [7,21,23,33] are retrained 

sing their original codes with parameter refinement to achieve 

he best performance while Cofe-Net [6] is tested with the pre- 

rained weights provided by their authors. In addition, the feature 

escriptor in [23] is trained with the segmentation training set for 

 fair comparison. Qualitative and quantitative results are provided 

o illustrate the advantages of our approach. 

The visual comparison is shown in Fig. 5 . For classical meth- 

ds, the disadvantage lies in the adjustment of colors, such as the 

verall greenish result for the light leak image in the third row 

n Fig. 5 . Another disadvantage is that their enhancement results 

enerally have a lot of noise. The advantage of the classical meth- 
6 
ds is the accuracy for enhancement. For example, the method in 

ig. 5 (g) is very effective for the enhancement of blood vessels. 

owever, this method has serious color distortion compared with 

ther methods. The difficulty of the deep learning methods is to 

nsure the accuracy of the enhancement results. For example, im- 

ges enhanced by other DL-based methods have various degrees of 

rtifacts that dont exist in the real image. Our method combines 

he high-frequency information commonly used in classical meth- 

ds. So the enhancement results are accurate without artifacts and 

he vessel structure is more obvious than other DL-based methods. 

esides, the color restoration is better and noise is significantly re- 

uced compared with classical methods. 

We further provide the quantitative evaluation compared with 

ther state-of-the-art approaches, which is shown in Table 1 . Our 

ethod performs the best on BRISQUE in the no-reference assess- 

ent on both EyeQ test set and clinical test set. Some classical 

ethods have higher entropy scores than ours because they can 

asily stretch the contrast. But our method performs best in deep 

earning methods. In the full-reference evaluation, classical meth- 

ds perform not as well as DL-based methods on the whole. Our 

ethod acquires the highest scores on the cataract surgery test set 

nd the second-highest scores on the degradation test set. Cofe-Net 

6] performs best on the degradation test set because it is trained 

ith the data degraded by the same algorithm. 

.3. Ablation studies 

To prove the effectiveness of our approach, we add the high- 

requency extractor and feature descriptor to the baseline model 

ycleGAN [7] respectively. Quantitative evaluation is performed on 

he full-reference cataract surgery dataset because we are more 

oncerned about real low-quality fundus images and full-reference 

cores are more accurate for these experiments. 

.3.1. High-frequency extractor for artifact reduction 

As shown in Table 2 , high-frequency information is helpful for 

he retinal image enhancement task. We add the high-frequency 

mages into different feature layers of the generator to explore the 

est way for concatenation. Features of the generator are down- 

ampled twice in total before being sent to the residual blocks. 

ayer 0 means the high-frequency images are concatenated with 

he input images and Layer 1 and 2 indicate the combination with 
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Table 1 

Quantitative evaluation compared with other state-of-the-art methods. 

No-reference Full-reference 

EyeQ Clinical Surgery Degradation 

BRISQUE Entropy BRISQUE Entropy PSNR SSIM PSNR SSIM 

Classical Method Cao et al. [8] 52.09 6.271 54.29 6.283 17.91 0.8451 17.33 0.8163 

Xiong et al. [13] 49.12 6.404 52.64 6.669 19.03 0.8773 16.55 0.8094 

Zhou et al. [5] 51.43 6.630 49.23 6.740 15.46 0.8293 16.53 0.8672 

Gupta and Tiwari [3] 52.43 6.676 51.37 6.768 17.07 0.8561 17.27 0.8553 

Gaudio et al. [14] 54.15 6.747 56.73 6.821 14.92 0.8041 15.15 0.8469 

Zhang et al. [15] 46.92 6.170 54.59 6.846 12.07 0.6664 11.25 0.6754 

DL- Based Method CycleGAN [7] 46.96 6.640 54.21 6.672 19.19 0.8896 18.69 0.8897 

CUT [33] 52.29 6.659 53.63 6.653 19.03 0.8773 18.65 0.8896 

You et al. [21] 45.16 6.669 49.46 6.661 18.95 0.8853 18.98 0.8928 

Zhao et al. [23] 45.28 6.621 53.73 6.680 19.19 0.8879 19.02 0.8937 

Cofe-Net [6] 55.87 6.672 55.02 6.653 18.58 0.8880 20.72 0.9218 

Ours 43.75 6.695 46.63 6.710 20.01 0.9012 20.18 0.9006 

Table 2 

Ablation study on the cataract surgery test set. 

Model component PSNR SSIM 

CycleGAN — 19.19 0.8896 

CycleGAN 

+ 

HF 

Layer 0 19.65 0.8929 

Layer 0, 1 19.76 0.8949 

Layer 0, 1, 2 19.86 0.8966 

All Layers 19.67 0.8934 

CycleGAN 

+ 

FD 

λS = 0 . 5 , λPL = 0 . 0125 19.59 0.8924 

λS = 0 . 5 , λPL = 0 . 025 19.70 0.8975 

λS = 0 . 5 , λPL = 0 . 125 19.55 0.8961 

λS = 0 . 25 , λPL = 0 . 025 19.57 0.8967 

λS = 2 . 5 , λPL = 0 . 025 19.69 0.8974 

Ours Layer 0, 1, 2 

20.01 0.9012 

(CycleGAN + HF + FD) λS = 0 . 5 , λPL = 0 . 025 

Fig. 6. Effectiveness of HF extractor. From top to bottom are low-quality images, 

image enhanced by CycleGAN and CycleGAN + HF. (a) Heavily blurred image. (b) 

Underlit image. (c) Light leak image. (d) Choroidal misleading image. 
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Fig. 7. Effectiveness of feature descriptor. From top to bottom are low-quality im- 

ages, image enhanced by CycleGAN and CycleGAN + FD. (a)-(d) are different fundus 

images. 
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eatures downsampled once and twice. The best result is that high- 

requency images are concatenated with the input image and fea- 

ures after each downsampling. If we add them to all feature maps 

n the generator, the scores drop instead. This is because some 

igh-frequency images are too close to the output and the remain- 

ng convolutional layers cannot handle the high-frequency images 

ell. 

Fig. 6 demonstrates the effect of the high frequency on the re- 

oval of artifacts. There are some flocculent artifacts in the en- 

anced result of CycleGAN in Fig. 6 (a) because of the severe blur. 
7 
fter adding the high-frequency information of the green chan- 

el, the artifacts disappear and the image becomes smoother. In 

ig. 6 (b), the result of CycleGAN is very noisy in the dark area and

ome blood vessels that do not exist are generated. In Fig. 6 (c), 

here is some red texture in the light leak area. High frequency 

educes the impact of uneven illumination, so these two artifacts 

lso disappear in our method. Fig. 6 (d) shows the artifacts caused 

y the choroid. Our method reduces artifacts and the blood vessel 

s more obvious than the baseline method at the same time. 

.3.2. Feature descriptor for structure retention 

We select the best weights λS = 0 . 5 , λPL = 0 . 025 in the training

hase, which is shown in Table 2 . Adding the feature descriptor 

an improve the quality of generated blood vessels, which is shown 

n Fig. 7 . After adding the feature descriptor, the contrast of the 

ain blood vessels in Fig. 7 (a) becomes larger compared with the 

aseline method. In Fig. 7 (b), some small blood vessels and image 

etails are improved after adding the feature descriptor. In Fig. 7 (c) 

nd (d), our approach can recognize and enhance some small ves- 

els ignored by the baseline model. Figure 8 displays the segmen- 

ation results of the feature descriptor with and without pseudo 

abel loss. Pseudo label loss plays an important role in blurred im- 

ge feature extraction. Many blood vessels cannot be segmented 

ithout pseudo label loss. As shown in Fig. 8 (c), the segmentation 

esult is greatly improved, where blood vessels are more accurate 

nd continuous. 
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Table 3 

Computational burden analysis on deep learning methods. G, D, F denote generators, discriminators and feature descriptors. 

Modules Parameters (M) Training Time /Epoch(s) Inference Time /Image (s) 

CycleGAN [7] 2G 2D 28.29 308 0.1483 

CUT [33] 1G 1D 1F 14.70 478 0.3470 

You et al. [21] 2G 2D 14.93 293 0.1491 

Zhao et al. [23] 2G 2D 1F 45.55 354 0.1451 

Cofe-Net [6] 3 Branches 41.22 – 0.2528 

CycleGAN + HF 2G 2D 28.29 344 0.1498 

CycleGAN + FD 2G 2D 1F 45.55 381 0.1486 

Ours 2G 2D 1F 45.55 432 0.1529 

Fig. 8. Effectiveness of the pseudo label loss. (a) Low-quality image. (b) Segmen- 

tation result by the feature descriptor without pseudo label loss. (c) Segmentation 

result with pseudo label loss. 

Fig. 9. Visual comparison for ablation study. The second row is the enlarged im- 

age of the first row. (a) Low-quality image. (b) Image enhanced by CycleGAN. (c) 

CycleGAN + FD. (d) Ours (CycleGAN + FD + HF). 
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Fig. 10. Application on vessel segmentation. (a) Low-quality image. (b) Segmenta- 

tion result of the low-quality image. (c) Enhancement result. (d) Segmentation re- 

sult of the enhanced image. 

Fig. 11. Application on vessel tracking. (b) and (d) are the enhancement results of 

(a) and (c). The tracking trajectory is corrected after enhancement. 
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.3.3. Qualitative and quantitative analysis 

Visual comparison for ablation study is shown in Fig. 9 . On the 

hole, the enhancement result of the baseline method is noisy, 

nd there are many flocculent artifacts around the heavily blurred 

nd dark area. After adding the feature descriptor, the blood ves- 

els are much clearer and the artifacts are reduced. After adding 

he high-frequency extractor, the contrast of blood vessels gets big- 

er. The image is smoother overall and artifacts are eliminated. 

oreover, by adding FD and HF extractor, the quality of blood ves- 

els is gradually improved. The color of blood vessels is darkened, 

nd the graininess of the image is reduced, which makes the image 

ore realistic. The quantitative evaluation of the surgery dataset is 

hown in Table 2 . After adding these two modules, PSNR and SSIM 

re gradually improved. In addition, our method (CycleGAN + FD + 

F) has a statistical improvement from CycleGAN with the p-value 

.034 < 0.05. 

.4. Computational burden analysis 

For classical methods, no training process is required. It takes 

 few seconds for the enhancement of each image. For example, 

t requires 8.661 s per image on average for Xiong et al. [13] and

.208 s for Zhang et al. [15] . For the deep-learning methods, the 

umber of parameters, training time and inference time are sum- 

arized in Table 3 . The training time increases slightly after adding 

F to CycleGAN [7] , while both training time and the number of 
8 
arameters increase after using the feature descriptor. After train- 

ng, the inference efficiency of the DL-based methods is similar and 

aster than classical methods. The inference time of our method 

oesn’t increase significantly compared to CycleGAN. 

.5. Applications 

Our enhancement method can be used as the preprocessing of 

lurred retinal images for vessel segmentation and tracking. We 

se the segmentation training set to train a U-Net [25] for vessel 

egmentation. The results are shown in Fig. 10 . Before enhance- 

ent, many blood vessel structures are blurry, so the segmentation 

esults are not very satisfactory. Our method can improve the visi- 

ility of blood vessels so the segmentation results are significantly 

mproved. We also test the enhancement method with a blood ves- 

el tracking algorithm [35] . As shown in Fig. 11 , our enhancement 

ethod corrects the tracking curve. 

Our approach is also helpful for automatic disease diagnosis. 

he retinal fundus multi-disease image dataset (RFMiD) [36] is 

sed to train an Efficient-Net [37] for automatic detection. There 

re 317 fundus images with the label of media haze in this dataset. 

nd in these media haze images, there are 137 images with 

ther diseases. The haze may hinder disease detection. We classify 

hether the images have other diseases except for media haze. The 

iagnostic accuracy is improved after enhancement. The results are 

hown in Table 4 . For images without the label of media haze, 

here are 401 healthy images and 1202 diseased images. Some im- 

ges also have slight blur or light leak. After enhancement, the 

light turbidity is eliminated and pathological structures become 

ore obvious. Therefore, the detection accuracy gets better. Our 

nhancement method not only improves the detection accuracy of 
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Table 4 

Accuracy of automatic disease diagnosis. Image with media haze is 

blurred. Image without meadia haze is clear or slightly blurred. 

Dataset Media Haze w/o Media Haze 

Original Image 0.8095 0.9281 

Enhanced Image 0.8571 0.9468 
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lurry images but also benefits clear images or slightly blurred 

mages. 

. Conclusion 

An end-to-end fundus image enhancement method is proposed 

n this paper. We use cycle-consistency constraints in the feature 

nd image level with unpaired training images. In addition, when 

eep learning methods deal with difficult images, such as severely 

lurred or dark images, it is easy to produce small vessel-like arti- 

acts. The proposed high frequency extractor can effectively reduce 

he artifacts. The feature descriptor trained with pseudo labels can 

lso improve the accuracy of enhancement. 

This method has better color and less noise compared with tra- 

itional methods. And it is more accurate and does not require 

aired data compared with deep learning methods. This method 

an improve the results of blood vessel segmentation and tracking. 

t is also helpful for automatic disease detection tasks and can im- 

rove the accuracy of classification. So it can be used as a prepro- 

essing of these computer-aided algorithms. As the proposed algo- 

ithm can enhance retinal images with fewer artifacts, it can be 

mployed in clinics to facilitate the diagnosis of ocular diseases. It 

an also be combined with retinal imaging devices to obtain retinal 

mages with better quality. 

Our current work pays more attention to blood vessels. In clin- 

cal diagnosis, ophthalmologists care more about specific areas, 

uch as disease or optic disc besides blood vessels. A very impor- 

ant task in our future work is to enhance the feature of diseases 

o make it easier for ophthalmologists to distinguish. It is also a 

hallenge because different diseases vary in color, shape, and size. 
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